Math 31B Midterm 1 Review, Fall 2021 Joyce Chew

1 Functions

Exercise 1. Show that f(z) = cosh(z) is one-to-one on (0, 00) with range (1,00). Note:

eX +e”*

cosh(z) = 5

Solution: To show that f(x) is one-to-one, we will show that it is strictly increasing on the
given domain. We compute that the derivative is

Then, if = is in the given domain, this means that = > 0. Since e” is a strictly increasing
function, this means that e* > 1. Similarly, since x > 0, then —x < 0, and since e” is strictly
increasing, e™* < 1 and therefore —e™ > —1. Then for x > 0,

z _ -z 1—e®
f(z) = < 26 > 26 since e” > 1
1—-1
> — since —e” " > —1

=0

Then since f'(z) > 0 for zin(0,00), we have that f(x) is strictly increasing, which means
that it is one-to-one. To find the range of f(x), notice that
e’ +e "

S =l =

and since f(x) is continuous and strictly increasing with f(0) = 1, this means that the range

of f(x) on (0,00) is (1, 00).
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Exercise 2. Let f(z) = In(cos(z) + 2).

(a) Where does f(x) have minima? Maxima?

(b) Sketch a graph of f(z).

Solution: (a) We need to find x so that f’(z) = 0, then check if these are minima or
maxima. First, using the chain rule, we get

—sin(x
fie) = cos(a:)<—i-)2
Then if f/(x) = 0, this means that
— sin(x) _0
cos(z) + 2
and therefore —sin(x) = 0. Hence x = 0,7, —m, 27, —27,.... To distinguish maxima and

minima, we need to check the second derivative of z. Using the quotient rule, we get

(cos(x) 4+ 2)(— cos(x)) — (—sin(z))(— sin(z))
(cos(z) + 2)?
—2cos(r) — cos?(x) — sin®(z)
(cos(x) + 2)?
—2cos(z) — 1
(cos(z) + 2)?

f'(x) =

where we used the fact that sin?(x) +cos?(x) = 1 in the last step. Then, checking the critical
points,

—2-1 2—1
)= <0 f'(r)= 2" >0
1(0) (1+2)2 F(m) (1+2)2
and in fact, by the properties of cosine, if = is an even multiple of 7, then f”(z) < 0, and if
x is an odd multiple of 7, then f”(z) > 0. Then we have maxima at x = 0, 27w, —27,... and

minima at z = 7, —7, 37, =37, . ...
Plugging in to f(x), we finally get that f(z) has maxima at (0,In(3)), (27, 1n(3)),... and
minima at (,0), (—m,0),.... This gives us enough information to roughly sketch f(z).
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2 Limits

Exercise 3. Evaluate
lim (1 4 x)"/*

z—0

Solution: As written, the limit is of indeterminate form 1°°, so we need to use some tricks
to rearrange the limit into a 0/0 or co/oco form to apply L’Hopital’s rule. Since we have
an r in the exponent, this is an indication that we should try to use the properties of the
logarithm. By the properties of e and In,

(14 )1/ = (/)

Then if we can find lim,_In((1 4+ 2)'/%), we can take e to that power to find the original
limit.

1
lim In((1 + 2)"/*) = lim —In(1 4+ 2) (property of log)

x—0 z—0
In(1
= lim —n( +z)
x—0 €T

Since lim, o In(1 4+ z) = 0 and lim,_,o z = 0, we can apply L’Hopital’s rule. This gives ue

. In(l+2z) -5 .
hm _— = 111’11
x—0 T z—0 1 z—0]1 4+ x

Then, returning to the original limit, we conclude that

lim(1 + z)"* = lim e+ — i el = ¢
z—0 z—0 z—0
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Exercise 4. Evaluate

Joyce Chew

. r \"
lim

Solution: As written, the limit is of indeterminate form 1°°, so we need to use some tricks.
As in the previous problem, by the properties of e and In,

( T ) _ n((Z)")
r+1
By the properties of log,

Then if we can find lim, . In((;57)%), we can take e to that power to find the original limit.

limln(< < ))zlimxln( x )
T—00 rx+1 T—00 rx+1

This limit is of indeterminate form oo - 0, so we need to use another trick. Multiplying by x
is the same thing as dividing by 1/z, so we rewrite this as

In (-2
limxln( L ) = lim M
T—00 T + 1 T—00 =
Since lim,_, In (a:i-i-l

T

) =0 and lim,_,. = = 0, we can apply L’Hopital’s rule. This means

1 x R o
L T 2
lim M — lim =t z+1)
T—00 L T—00 =1
T 2
z+1 | 1
= lim ——""2 (a+1)”
T—00 _—21
T
2

m—
z—oo x(x + 1)
2
— lim —— = —1
z—oo T + X

A

To summarize, lim,_,, xIn (

z+1

) = —1. Returning to our original limit, we conclude that
lim < v ) = lim ™Y = lim e

T—00

1

= 671
T—00
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3 Inverse Trig Derivatives and Integrals
Exercise 5. Find “Larccos(z) using the fact that
cos(arccos(x)) = x

Solution: Since
cos(arccos(x)) = x

we take the derivative of both side and use the chain rule to obtain:

— sin(arccos(z)) - % arccos(z) =1
Therefore,
d (2) -1
— arccos(x) = —————
dx sin(arccos(x))

There are two main methods to simplifying the right-hand-side.
Method 1: Use the Pythagorean trig identity. Since sin?(z) + cos?(x) = 1, we can solve for

sin(x) to get
sin(xz) = /1 — cos?(x)

Using this relationship,

-1
e arccos(z) = \/1 — cos?(arccos(z))
-1
/1= (cos(arccos()))?

—1
V122

where in the last step we used the fact that cos(arccos(x)) = x.

Method 2: Use trig substitution. By definition, arccos(z) is the angle 6 between —7/2 and
7/2 so that cos(d) = x. Then we can consider the right triangle with acute angle 6 so that the
side adjacent to # has length x and the hypotenuse has length 1, and in this case, cos() = =.
Then by the Pythagorean theorem, the length of the side opposite to # has length /1 — 22,
so sin(f) = v/1 — x2. Since § = arccos(x), this means that sin(arccos(z)) = V1 — 22, so

d (z) = -1
7 arecos(z) = N
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Exercise 6. Evaluate

/ dz
V4 — 92?2
Solution: The integrand looks a lot like ﬁ, which is L arcsin(z). Let’s rewrite our

integral to get it closer to this form: “
dx dx
| ==/ Jii—t
_ / _dr
B i/ dz
20 -Gy

This is a lot closer to the more familiar form, so let’s use substitution. Set u = %x Then
du = %dm and so dx = %du. Substituting, we get

1 / dx 1 / %du
2 m 2) V1—u2
1 2

=3°3" arcsin(u) + C

and substituting to write this in terms of z, we conclude

—4_9x2—3acs 5



