
Math 31B Midterm 2 Review Joyce Chew

1 Arc length and surface area

Exercise 1. Compute the arc length of y = ln(sin(x)) for π
4
≤ x ≤ π

2
.

Exercise 2. Show that if the arc length of y = f(x) over [0, a] is proportional to a, then
y = f(x) must be a linear function.

Exercise 3. Find the surface area of the torus obtained by rotating the circle

x2 + (y − b)2 = r2

around the x-axis.

2 Sequences

Exercise 4. Let an = n sin( 1
n
). Find limn→∞ an.

Exercise 5. Find the limit of the sequence

an =
(ln(n))3

n

Exercise 6. Show that the sequence

an =
1

ln(n+ 2)

converges.

Exercise 7. Suppose an = (1
5
)n, and L = limn→∞ an. What is the smallest N so that for all

n > N , |an − L| < 10−5?

3 Series

Exercise 8. Find the sum of the following infinite series:

1

2
+

1

6
+

1

12
+

1

20
+ . . .

Exercise 9. Does the series
∞∑
n=0

1

1 + en

converge or diverge?

Exercise 10. Does the series
∞∑
n=0

(−1)n
5(2n+1)

(2n+ 1)!

converge conditionally, converge absolutely, or diverge?
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4 Power series

Exercise 11. Write down the series

x− x3

3!
+
x5

5!
− x7

7!
+ . . .

in summation notation.

Exercise 12. There is a function f(x) so that

f(x) =
∞∑
n=0

(−1)nx2n, |x| < 1

Find an expression for f(x).

Exercise 13. Show that

ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
, |x| < 1

Exercise 14. Find the interval of convergence for the series

∞∑
n=1

(−1)n+1x
n

n

Use this to show that

ln(2) = 1− 1

2
+

1

3
− 1

4
+ . . .

Exercise 15. Find the radius of convergence for the series

∞∑
n=0

(−1)n
x2n+1

2n+ 1

and show that the series converges at the right endpoint.

Exercise 16. Show that
π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .
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5 Solutions

Solution 1. We have y = f(x) = ln(sin(x)), so

f ′(x) =
cos(x)

sin(x)

Then

AL =

∫ π/2

π/4

√
1 +

(
cos(x)

sin(x)

)2

dx

=

∫ π/2

π/4

√
sin2(x) + cos2(x)

sin2(x)
dx

=

∫ π/2

π/4

dx

sin(x)

=

∫ π/2

π/4

csc(x)dx

= − ln | csc(x) + cot(x)||x=π/2x=π/4

= − ln |1|+ ln |
√

2 + 1|
= ln |

√
2 + 1|
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Solution 2. Let L(a) be the arc length of y over [0, a]. Then

L(a) =

∫ a

0

√
1 + (f ′(x))2dx

By the Fundamental Theorem of Calculus part 2 and taking the derivative with respect to
a,

L′(a) =
√

1 + (f ′(a))2

Since L(a) is proportional to a, there is some constant real number k so that

L(a) = k · a

and so L′(a) = k. This means that

k =
√

1 + (f ′(a))2

for any positive real number a, which means that f ′(x) must be a constant. This is only
true if f is a linear function.
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Solution 3. By symmetry, we can compute the surface area of the outer half of the right
half of the torus and multiply by 4 to compute the surface area of the entire object. Then
for that portion,

y = f(x) = b+
√
r2 − x2

f ′(x) =
1

2
· −2x√

r2 − x2
=

−x√
r2 − x2

Then

SA = 4

∫ r

0

2π(b+
√
r2 − x2)

√
1 +

(
−x√
r2 − x2

)2

dx

= 8π

∫ r

0

(b+
√
r2 − x2)

√
r2 − x2 + x2

r2 − x2
dx

= 8π

∫ r

0

(b+
√
r2 − x2) r√

r2 − x2
dx

= 8π

∫ r

0

(
br√

r2 − x2
+ r

)
dx

= 8π

∫ r

0

(
br

r
√

1− (x
r
)2

+ r

)
dx

= 8π

∫ r

0

(
b√

1− (x
r
)2

+ r

)
dx

= 8πrb arcsin(
x

r
) + rx

∣∣∣x=r
x=0

= 8πrb(
π

2
+ r2)
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Solution 4. We have that an = f(n) where

f(x) = x sin(
1

x
)

Then

lim
x→∞

x sin(
1

x
) = lim

x→∞

sin( 1
x
)

1
x

= 1

where we use the fact that

lim
[something]→0

sin[something]

[something]
= 1

Then limnto∞ an = 1.
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Solution 5. We have that an = f(n) where

f(x) =
(ln(x))3

x

Then

lim
x→∞

(ln(x))3

x
LH
= lim

x→∞

3(ln(x))2

x
LH
= lim

x→∞

6 ln(x)

x
LH
= lim

x→∞

6

x
= 0

Then limn→∞ an = 0.
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Solution 6. All of the terms are positive, i.e. an > 0 for all n. Also, since ln(x) is an
increasing function, an is a decreasing sequence. Then since an is decreasing and bounded
below, an converges to a finite limit.
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Solution 7. We know that L = limn→∞ an = 0. We want to find the smallest N so that for
all n > N ,

|an − L| < 10−5

and so plugging in, we want to satisfy∣∣∣∣(1

5

)n∣∣∣∣ < 10−5

which means
5n > 10−5

Taking logs, this means

n >
ln(10−5)

ln(5)
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Solution 8. We can write the series as

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ . . .

In summation notation, this is
∞∑
n=1

1

n(n+ 1)

This looks like a situation where we can use partial fractions. We want to find A and B so
that

1

n(n+ 1)
=
A

n
+

B

n+ 1

We find that A = 1, B = −1, so we can write our series as

∞∑
n=1

1

n
− 1

n+ 1

Let’s look at the partial sums. Let

SN =
N∑
n=1

1

n
− 1

n+ 1

Then

SN =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

N − 1
− 1

N

)
+

(
1

N
− 1

N + 1

)
This telescoping series has a lot of cancellations. In particular, we get

SN = 1− 1

N + 1

Then
∞∑
n=1

1

n
− 1

n+ 1
= lim

N→∞
SN = 1
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Solution 9. This series is almost
∑

1
en

, which is a geometric series, and we know how to
deal with those. Then using the limit comparison test:

L = lim
n→∞

1/(1 + en)

1/en
= lim

n→∞

en

1 + en

We can equivalently evaluate limx→∞
ex

1+ex
. Then

lim
x→∞

ex

1 + ex
LH
=

ex

ex
= 1

Since L is finite and greater than 0, by the limit comparison test, our series has the same
convergence behavior as

∑
1
en

. But this is a geometric series with ratio less than 1, so it
converges. Therefore the original series converges.
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Solution 10. We can first check if it converges absolutely. Since we have both exponents
(involving n) and factorials, the ratio test will probably work well here.

lim
n→∞

5(2(n+1)+1)

(2(n+1)+1)!

5(2n+1)

(2n+1)!

= lim
n→∞

5(2n+3)

5(2n+1)

(2n+ 1)!

(2n+ 3)!

= lim
n→∞

25
1

(2n+ 3)(2n+ 2)

= 0

So by the ratio test, the series converges absolutely.
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Solution 11. Recall that we can write the odd numbers as 2n + 1 (if n starts at 0). Then
we can write the series as:

∞∑
n=0

(−1)n
x(2n+1)

(2n+ 1)!
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Solution 12. We know that
1

1− x
=
∞∑
n=0

xn

Note that we can write f(x) as

f(x) =
∞∑
n=0

(−1 · x2)n

So replacing x with −1 · x2 in the first equation, we get

1

1− (−x2)
=
∞∑
n=0

(−1 · x2)n

so

f(x) =
1

1 + x2
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Solution 13. We know that

1

1− x
=
∞∑
n=0

xn, |x| < 1

and replacing x with −x, we have

1

1 + x
=
∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn = 1− x+ x2 − x3 + . . .

Note that if we integrate both sides, we get

ln(1 + x) = C + x− x2

2
+
x3

3
= C +

∞∑
n=1

(−1)n+1x
n

n

Plugging in x = 0, we get that C = 0. So

ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
, |x| < 1



Math 31B Midterm 2 Review Joyce Chew

Solution 14. Since we have something raised to a power involving n, but only in the
numerator, let’s use the ratio test. We want L < 1, where

L = lim
n→∞

|x|n+1/(n+ 1)

|x|n/n

Then

L = lim
n→∞

|x| n

n+ 1

= |x|

Then the series converges if |x| < 1, so the radius of convergence is 1. We still need to check
the endpoints. When x = 1, the series is

∞∑
n=1

(−1)n+1 1

n

which converges by the alternating series test. Alternatively,

∞∑
n=1

(−1)n+1 1

n
=

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ · · · =

∞∑
n=1

1

2n− 1
− 1

2n
=
∞∑
n=1

1

2n(2n− 1)

and you can show that this series converges using, for example, the limit test.
When x = −1, the series is

∞∑
n=1

(−1)n+1 (−1)n

n
=
∞∑
n=1

(−1)2n+1 1

n

Since 2n+ 1 is always odd, we can rewrite the series as

∞∑
n=1

−1

n

which diverges. So the interval of convergence is −1 < 0 ≤ 1. Then we can take x = 1 to
show the desired form for ln(2).
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Solution 15. Since we have something raised to a power involving n, but only in the
numerator, let’s use the ratio test. We want L < 1, where

L = lim
n→∞

|x|2(n+1)+1/(2(n+ 1) + 1)

|x|2n+1/(2n+ 1)

Then

L = lim
n→∞

|x|2n+3

|x|2n+1
· 2n+ 1

2n+ 3

= lim
n→∞

|x|2

= x2

This means we need |x| < 1, so the radius of convergence for this series is 1. Now we need
to check the right endpoint. For x = 1, we consider the series

∞∑
n=0

(−1)n
1

2n+ 1

which converges by the alternating series test, so the series converges at the right endpoint.
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Solution 16. The right-hand-side of this is the series

∞∑
n=0

(−1)n
x2n+1

2n+ 1

with x = 1. Consider the series

∞∑
n=0

(−1)nx2n =
∞∑
n=0

(−1 · x2)n

If we integrate this series term by term, we get our original series (plus a constant). But
because this is a geometric series, we know that

1

1− (−x2)
=
∞∑
n=0

(−1 · x2)n

If we integrate both sides, we get

arctan(x) = C +
∞∑
n=0

(−1)n
x2n+1

2n+ 1

Plugging in 0 to calculate C, we get

arctan(0) = C

and so C = 0. This means

arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1

We computed in the previous problem that the series converges for −1 < x ≤ 1. Then we
can take x = 1 to get

arctan(1) =
∞∑
n=0

(−1)n
1

2n+ 1

In other words,
π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .


