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High-Dimensional Data

Question: What is “high-dimensional data”?
One answer: Each data point is a vector with “many” entries,
i.e. there is a lot of information associated with each point.
Examples:

Single-cell sequencing: Each data point corresponds to 1 cell,
with counts of the particular enzymes/proteins that cell has
Social networks: Each data point corresponds to 1 person, and
each person has a relationship with every other person in the
network
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What can you do with complicated data?

Use machine learning!
High-profile successes

ChatGPT
Image processing/generation

These applications are all on interesting domains (text,
images) and take advantage of structure in those domains
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Anatomy of a machine learning model

Many machine learning models can be thought of as an
embedding together with a classifier.
The embedding transforms each input into a high-dimensional
vector.
The classifier makes predictions based on these
high-dimensional vectors.
Depending on the particular model being used, either part can
be “trained”
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The manifold assumption

We’re going to assume that our data lives on a geometric structure
called a manifold.

Definition (informal)
A d-dimensional manifold is a structure that “looks like” Rd

when

you “zoom in” close enough.

Why make this assumption?
It works
Very natural in certain settings
Manifolds have useful structure!
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The Laplace-Beltrami Operator

Let M be a d-dimensional manifold. Our goal is to characterize
functions f : M æ R.

Definition
The Laplace-Beltrami operator L is defined by

Lf = ≠�f = ≠div ¶ Òf = ≠Ò · Òf .

The Laplace-Beltrami operator can be used to write down a heat
equation on a manifold,

ˆu(x, t)
ˆt

+ Lu(x, t) = 0,

where x œ M and the solution u(x, t) represents the temperature
at time t at point x.
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Eigendecomposition of L

Definition
A function Ïk : M æ R is an eigenfunction of L if there exists

⁄k œ R such that

LÏk = ⁄kÏk .

There are countably many pairs (Ïk , ⁄k).
0 = ⁄0 < ⁄1 Æ ⁄2 Æ . . .

We can write any reasonable function f (x) defined on M as

f (x) =
Œÿ

k=0

f̂kÏk(x)

We can recover the coe�cients f̂k œ R through the
relationship

f̂k = Èf , ÏkÍM

where Èf , gÍM =
s

M f (x)g(x)dµ(x)
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Intuition

The Laplace-Beltrami operator tells us something about how
a signal (function) di�uses over the manifold. Intuitively, this
tells us something about the geometry of the manifold.
The eigenfunctions of the Laplace-Beltrami operator are the
“building blocks” of any function on the manifold.
The first eigenfunctions capture general characteristics, and
the later eigenfunctions capture fine details.
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Example: Stanford bunny [4]
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Convolution on M

Using the Ïk , we can define a convolution operation on M!

f ı h(x) :=
ÿ

k
f̂k ĥkÏk(x)

Why would we want to do this?
In other settings (most famous example: images),
convolutions produce very good embeddings.
Convolution incorporates the geometry of the domain.
We will see that these are relatively easy and cheap to
compute.
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Notation and big-picture goal

We will work with data in the form f (x), where x œ Rm.
To apply the manifold assumption, we’ll assume that x œ M,
where M is a d-dimensional manifold and d < m.
Note that we don’t know anything about M
Goal: Approximate L and {Ïk , ⁄k}Œ

k=0
and use these to

construct a useful embedding via convolutions
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Approximating L

We start with a collection of points in Rm, {xi}n
i=1

. Given a
bandwidth parameter Á, we define a weight matrix W whose
entries are given by

Wi ,j = 1
Ád/2

e
≠Îxi ≠xj Î2/Á

and a diagonal degree matrix D whose diagonal entries are given by

Di ,i =
nÿ

j=1

Wi ,j .

Then we can define the graph Laplacian by

Ln = 1
Án

(D ≠ W ).
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Interlude: Why graphs?

A graph (as a mathematical object) is a collection of nodes and
edges.

One way to study a graph is to write down its adjacency
matrix A, where each entry Ai ,j encodes the weight of the
edge between node i and node j.
The adjacency matrix encodes the arrangement (geometry) of
the graph.
The graph Laplacian encodes how information “flows”
throughout the graph.
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Interlude: Why graphs?
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Approximating Ïk and ⁄k

It turns out that we can approximate Ïk and ⁄k by computing the
eigenvectors and eigenvalues of the matrix Ln!
Let vk and ⁄̃k be the eigenvectors and eigenvalues of Ln (that is,
vk œ Rn and ⁄̃k œ R such that Lnvk = ⁄̃kvk).

Theorem (Belkin and Niyoji, 2006 [1])
As n æ Œ, [vk ]i æ Ïk(xi) and ⁄̃k æ ⁄k .

In other words, the ith entry of the eigenvector vk is a good
approximation for the eigenfunction Ïk evaluated at xi .
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Approximating È·, ·ÍM

Recall that we need to be able to compute Èf , ÏkÍM in order to
perform convolution. We can approximate this inner product
(which involves integration over the manifold M) with a weighted
dot product.

Theorem (Chew et al, 2022 [3])
Assume f and g are continuous bounded functions on M, and the

points {xi}n
i=1

are drawn uniformly at random from M. Let fi and

gi denote f (xi) and g(xi), respectively. Then, with high probability,

-----
1
n

nÿ

i=1

figi ≠ Èf , gÍM

----- Æ Cfg

Û
18 log(n)

n
.
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Summary

Start with a collection of points {xi}n
i=1

and some
measurement on those points f (xi).
Assume that the xi are sampled from some d-dimensional
manifold.
Construct a data-driven graph Laplacian Ln (an n ◊ n matrix).
Compute the eigenvectors and eigenvalues of Ln.
Use the eigenvectors to perform convolution.

f ı h(x) =
ÿ

k
f̂k ĥkÏk(x)

f ı h(xi) =
nÿ

k=1

f̂k ĥk [vk ]i , f̂k = 1
n

nÿ

i=1

fi [vk ]i

f ı h = ĤVV
T

f
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The final embedding

Now that we can perform convolution, we can construct the final
embedding.

1 Choose some functions h as your filters.
2 Perform convolution with your chosen filters h.
3 Apply a pointwise nonlinearity to the result (example:

absolute value).
4 Repeat from step 2 as many times as you would like.
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Some practical comments

The problem has been reduced to linear algebra (eigenvector
computation, matrix/vector multiplication)
Computing eigenvectors can be expensive...

It turns out that you can just compute the first Ÿ eigenvectors
and eigenvalues of Ln, and you still obtain a decent
approximation ([3, 2]).
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Example: Single-Cell Data

Will a Melanoma Patient Respond to Immunotherapy?
54 Patients
11,862 cells per patient
30 proteins measured in each cell

Manifold classification task
Each cell is a point in R30

Each person is a point cloud of 11,862 points in R30

We assume each person’s points lie upon some d-dimensional
manifold for d < 30.
Simple classifier on embedding using approximation to the
Laplace-Beltrami operator achieves 83% accuracy for patient
outcomes
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Takeaways

It is useful to leverage geometric structure in data, and
applying the “manifold assumption” is a trick that can be
helpful with certain kinds of data.
Convert a problem to linear algebra whenever possible!
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Contact me!

Email: joycechew@math.ucla.edu
Website: joycechew.github.io
Projects/research interests: Graph and manifold learning,
manifold-valued matrix/tensor decompositions, topic modeling
via nonnegative matrix factorizations, debiasing of word
embeddings, di�erential privacy
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Related Techniques

If your data is from a graph to begin with, you can construct a
graph Laplacian using the graph’s adjacency matrix.

Directed graph
A directed graph specifies the direction in which an edge “flows”.

Examples:
Communication
Transit routes
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Magnetic Laplacian on Directed Graphs

Hermitian Adjacency Matrix
As = 1

2(A + A
T )

� = fi

2 (A ≠ A
T )

H = As § exp (i�)

The Magnetic Laplacian
L = Ds ≠ H = Ds ≠ As § exp (i�)

Undirected geometry is captured by the magnitude of entries.
Directional information encoded by phase.
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Example: Directed Stochastic Block Model

0

1

2 3

4

Majority flow

“Ordered” meta-graph

0

1

2 3

4

Noise edges
Majority flow

“Cyclic” meta-graph

A node’s cluster determines
the probability of existence
and direction of edges to
nodes in other clusters.
Task: identify which cluster
a node belongs to
Simple classifier on
embedding obtained using
magnetic Laplacian achieves
accuracy of 97.8%, 99.8%,
and 88.5%, respectively, for
ordered, cyclic, and cyclic
with noise
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