Developing a Bifurcation Theory of Path-Constrained Optimal Control Extremals to
Support Technological Development of Carbon Nanocoils

Motivation: Carbon nanocoils have exciting technological applications in the form of
chemical sensors, supercapacitors, and flexible electronics [3]. However, their dynamics are not
easily observed. Highly flexible macroscopic springs, such as toy Slinkies, are governed by similar
dynamics and adopt equilibria that “jump” to very different configurations after small
perturbations such as twist and extension. I spent the summer of 2019 at an NSF-funded REU at
Cornell University studying such springs to gain insight into analogous behavior of carbon
nanocoils. Using optimal control methods, I found stable and unstable equilibrium configurations
of upright springs with twisted and vertically extended ends. By plotting the displacement of the
centerline from the vertical axis against the height of the free end, I discovered saddle-node
bifurcations that explained observed hysteresis (Figure 1). Spurred on by this exciting discovery,
I plan to develop methods for analyzing bifurcations of extremals of optimal control
problems. I will then use these tools to understand the dynamics of carbon nanocoils.
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The Pontryagin Maximum Principle (PMP) gives
extremals of the constrained cost functional,
which are stable and unstable solutions of the
optimal control problem. A flexible spring can be
modeled as such a problem. Its equilibrium
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constraint physically corresponds to contact between adjacent coils. This coil contact causes
bifurcations and hysteresis in spring configurations (Figure 1). Path constraints vastly increase the
difficulty of solving optimal control problems and preclude existing approaches for determining
solution stability. Therefore, gaining a deeper understanding of unusual spring behavior requires
more advanced methods for studying optimal control problems with path constraints.

Goal 1: Develop numerical methods to robustly solve path-constrained optimal control
problems and determine solution stability. During my REU, I coded a MATLAB solver for the
spring problem using the shooting method, but the path constraint impeded convergence. I will
build on the new variational evolving method (VEM) in [2] to devise a robust VEM for solving
general path-constrained problems. I previously developed numerical methods to find unstable
extremals for springs, as path constraints prevent the use of existing tools for determining the
stability of PMP extremals. These methods succeeded because the extremals were path-connected,
which is true for any optimal control problem with a scale-invariant Hamiltonian [1]. I will extend
this work by developing algorithms for path-constrained problems without the scale-invariance
property and devising numerical stability conditions for general PMP extremals.
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Goal 2: Develop bifurcation theory of path-constrained PMP extremals. In my previous
work on twisted springs, I discovered bifurcations in the spring configurations in which the
bifurcation parameter was the height of the spring’s free end. Using this discovery as precedent, I
want to develop a bifurcation theory of path-constrained PMP extremals. While infinite-
dimensional bifurcation theory has been applied to related systems arising from the Euler-
Lagrange equations [4], no analogous theory exists for path-constrained problems, which are more
naturally studied using optimal control and the PMP. I plan to use the numerical methods
developed in Goal 1 to find extremals of specific path-constrained problems and characterize their
stability. Using these examples, I will develop analytical bifurcation conditions for path-
constrained problems and implement this work in a robust software package.

Goal 3: Use the new numerical tools and bifurcation theory to predict behavior of
carbon nanocoils. I will apply the optimal control spring model to carbon nanocoils by changing
physical parameters in the energy function L and the path constraint g, and will use the numerical
methods developed in Goal 1 to explore their configurations. I will validate the model and new
numerical tools by comparing predicted configurations to those determined experimentally via a
precisely controlled robot. I will then use the theory developed in Goal 2 to identify and classify
bifurcations in the configurations of carbon nanocoils. In doing so, the following three objectives
will be pursued: (i) predict continuous movements of the endpoints that lead to hysteresis, as
carbon nanocoils must be able to reversibly deform to perform their functions; (ii) find continuous
movements that cause the nanocoils to jump between qualitatively distinct configurations, as such
jumps adversely impact nanocoil functions and are difficult to model precisely; (iii) find unstable
extremals of the optimal control problem, as these extremals denote a dangerous unstable boundary
between stable configurations. These predicted configurations and bifurcation analyses will
support further technological applications of carbon nanocoils by avoiding undesired behavior.

Intellectual Merit: My proposed work will produce a robust optimal control method for
path-constrained problems, expand the reach of bifurcation theory into the field of optimal control,
and illuminate the dynamics of carbon nanocoils. As bifurcation theory predicts the effects of
parameters on long-term solution behavior of dynamical systems, an analogous theory for
extremals of optimal control problems will be an invaluable tool for multiple applications. I have
the mathematical background to investigate such problems and the computational skill to develop
software implementing the novel bifurcation analysis.

Broader Impacts: A bifurcation theory for extremals will explain unique behaviors, such as
hysteresis, in any phenomenon that can be modeled as an optimal control problem. Identifying
bifurcations of configurations is especially important for carbon nanocoils, which have exciting
technological applications in the form of chemical sensors, fuel cells, supercapacitors, and flexible
electronics [3]. In addition, the necessary experimental validation opens doors for interdisciplinary
collaborations, such as with chemists synthesizing carbon nanocoils and engineers developing
precise methods of robot control. Finally, many of the diverse tools and concepts involved in this
work are accessible to motivated students of all ages, making it ideal for introducing them to new
applications of mathematics and computation. I will encourage undergraduate involvement in my
research, and I will use toy Slinkies to demonstrate this work in K-12 outreach settings, thereby

helping to inspire the next generation of scientists.
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