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Outline

The Euclidean Scattering Transform
A General Scattering Framework
Examples
Manifold Scattering on Point Clouds
Numerical Experiments
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Deep Neural Networks

A deep neural network can be thought of as an embedding
together with a classifier.
The embedding transforms each input into an element of a
high-dimensional vector space.
The classifier makes a final prediction.
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Invariance and Equivariance
Let τc be the translation operator τc f (x) = f (x − c).
Equivariance (where are the eyes?): Want a transformation S
such that Sτc f = τcSf (i.e. the transformation commutes
with translations)
Invariance (are the eyes open?): Want a transformation S
such that Sτc f = Sf (i.e. the transformation is unchanged by
translations)

Figure: Created by Holly Steach
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The (Euclidean) Scattering Transform

Group Invariant Scattering (S. Mallat 2012):
Model of Convolutional Neural Networks.
Predefined (wavelet) filters.
Highlights the symmetries of such networks with
respect to group actions

Advantages:
Provable stability and invariance properties.
Very good numerical results in certain situations.
Needs less training data.

6 Chew(UCLA) Measure Space Scattering



The Wavelet Transform

Setup:
Mean-zero function ψ:

∫
R ψ(x)dx = 0

Non-negative scaling function ϕ:
∫
R ϕ(x)dx = 1

Dilations: ψj(x) = 2−jψ
(

x
2j

)
, ϕJ(x) = 2−Jϕ

(
x
2J

)
Convolution Operators: Wj f = ψj ⋆ f , AJ f = ϕJ ⋆ f

The Transform:
WJ := {Wj}j≤J ∪ {AJ}
Captures information about the input at different scales of
resolution or frequency bands
Isometry property:

∥WJ f (x)∥2 :=
∑
j≤J

∥Wj f ∥2 + ∥AJ f ∥2 = ∥f ∥2
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The Scattering Transform

Windowed and Non-Windowed Transforms
Multilayered cascade of nonlinear measurements.
Each “layer” uses a wavelet transform WJ and a nonlinearity.
U[j]f (x) = MWj f (x) = |Wj f (x)|, j ≤ J ,
Path of scales p = (j1, . . . , jm)
U[p]f (x) = U[jm] . . .U[j1]f (x)
Windowed scattering transform:

SJ [p]f (x) = AJU[p]f (x)

Non-windowed scattering transform:

S[p] = lim
J→∞

SJ [p]f (x) ∼= ∥U[p]f ∥1
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Invariance and Equivariance

Theorem: (Mallat 2012)
Let τc be the translation operator τc f (x) = f (x − c)

The windowed scattering transform SJ is equivariant:

SJ [p]τc f = τcSJ [p]f

The non-windowed scattering transform S is invariant:

S[p]τc f = S[p]f .

Extract Invariance from Equivariance
The invariance of S follows from the facts:

The operator U is translation equivariant.
S[p]f ∼= ∥U[p]∥1f .
∥ · ∥1 is translation invariant.
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Geometric Deep Learning

Modern Data Landscape
Graphs (social networks, molecules)
Manifolds (higher-dimensional structures, explicit and implicit)
Goal: Generalize/extend the ideas and success of CNN-type
architectures to these non-Euclidean settings.

Geometric Scattering Transforms
Key challenge is defining wavelets.
Once wavelets are defined, scattering is then an alternating
cascade of wavelets and non-linearities.
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Wavelets and Scattering on a Measure Space

Setup:
Let X = (X ,F , µ) be a measure space
L a self-adjoint, positive semidefinite operator on L2(X )
Orthonormal eigenbasis: Lφk = λkφk , k ≥ 0
Heat-Semigroup: Pt = e−Lt

Wavelets: Wj = P2j−1 − P2j , 0 ≤ j ≤ J ,
Low-Pass Filter: AJ = P2J

Proposition:
W = {Wj}0≤j≤J ∪ {AJ} is a non-expansive frame, on L2(X ), i.e.,

c∥f ∥2 ≤
∑

j
∥Wj f ∥2 + ∥AJ f ∥2 ≤ ∥f ∥2.
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Geometric Scattering on Measure Spaces

Windowed Scattering transform
U[j1, . . . , jm]f = MWjm . . .MWj1f
SJ [j1, . . . , jm]f = AJU[j1, . . . , jm]f

Non-Windowed Scattering transform
S[j1, . . . , jm]f = |⟨U[j1, . . . , jm]f , φ0⟩|

Difference from before:
Integrating against the bottom eigenvector is not in general
equivalent to taking an L1 norm. (This issue is even present on
graphs when we weight vertices by degree.)

Theorem:
∥SJ f1 − SJ f2∥ ≤ ∥f1 − f2∥, ∥Sf1 − Sf2∥ ≤ CX ∥f1 − f2∥.
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What Groups Should We Be Invariant To?

Setup:
Let G be a group of bijections from X to X . For ζ ∈ G, let

Vζ f (x) = f (ζ−1(x))

First Guess (Preserves measures):
The scattering transform should be invariant to G if for all ζ ∈ G,
µ(ζ−1(B)) = µ(B) for all measurable sets B.

Problem:
What if X is a graph and µ weighs vertices by degree?

Weaker Condition (Preserves Inner Products):
G induces an isometry on L2(X ), i.e.,

⟨Vζ f ,Vζg⟩ = ⟨f , g⟩.
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Equivariance and Invariance

Theorem:
If G preserves inner products, then the windowed scattering
transform is equivariant and the non-windowed scattering
transform in invariant to the action of G, i.e.

SJVζ f = VζSJ f , and SVζ f = Sf

Theorem:
If G preserves inner products and preserves measures, and
additionally φ0 is constant, then the windowed scattering
transform is invariant in the limit,

lim
J→∞

∥SJVζ f − SJ f ∥L2(X ).
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Examples

Traditional Graphs - Graph Laplacian: D − A
(Can also normalize and use D−1L, LD−1 or D−1/2LD−1/2

depending on choice of measure)

Manifolds - Laplace-Beltrami operator:
−∆ = −∇ · ∇
Directed Graphs - Magnetic Laplacian
Signed Graphs - Signed Laplacian
Signed and Directed Graphs - Magnetic Signed
Laplacian
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Magnetic Laplacian on Directed Graphs

Hermitian Adjacency Matrix

As = 1
2(A + AT )

Θ = π

2 (A − AT )

H = As ⊙ exp (iΘ)

The Magnetic Laplacian
L = Ds − H = Ds − As ⊙ exp (iΘ)

Undirected geometry is captured by the magnitude of entries.
Directional information encoded by phase.
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Numerical Experiments: Directed Stochastic Block Model
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A node’s cluster determines
the probability of existence
and direction of edges to
nodes in other clusters.
Node-level task of node
classification, so windowed
scattering coefficients are
appropriate.
Scattering using magnetic
Laplacian achieves accuracy
competitive with or
exceeding that obtained
from GNNs, even networks
designed for directed graphs.
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Point Cloud Scattering

Problem:
What if data is sampled from an underlying manifold, but we don’t
have knowledge of the manifold itself?

Data-Driven Graph Laplacian
Construct an affinity matrix using a (Gaussian) kernel to
determine the weights K (xi , xj)
Approximate eigenfunctions / eigenvalues of the
Laplace-Beltrami operator by the eigenvectors / eigenvalues of
the graph Laplacian

Data-Driven Scattering
Use κ eigenvectors / eigenvalues of the data-driven graph
Laplacian to approximate the heat semigroup Pt = e−Lt .
Use this approximation to construct wavelets as before.
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Convergence

Theorem:
If the kernel is constructed properly, and the sample points are
drawn i.i.d. uniformly at random (and several other assumptions),
then with high probablity, the discretization error of the
data-driven scattering transform is O(N−2/(d+6))

Remark:
This result builds on work by X. Cheng and N. Wu which
guarantees the convergence of individual eigenvectors in ℓ2 and of
the eigenvalues. Our rate of convergence, with respect to N, is
essentially the same as in this earlier result.
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Numerical Experiments: Spherical MNIST

Data: MNIST randomly rotated and projected onto sphere.
Problem: signal classification on a manifold.

Data type N κ Accuracy (%)

Point cloud 1200 200 79 ± 0.9
Point cloud 1200 400 88 ± 0.2
Point cloud 1200 642 84 ± 0.7

Mesh 642 642 91 ± 0.2

Table: Classification accuracies for spherical MNIST averaged over 10
realizations, using non-windowed scattering coefficients.
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Point Cloud Scattering Cont.

Problem:
What if it is computationally infeasible to compute a sufficient
number of eigenvalues / eigenvectors?

Second Method:
In this case, we use the approximation

P1 ≈ P(N)
1 := (D(N))−1W (N)

where

W (N)
i ,j = K (xi , xj) and D(N)

i ,i =
N−1∑
j=0

W (N)
i ,j ,

and we approximate Pt by

Pt ≈ (P(N)
1 )t .
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Numerical Experiments: Single-Cell Data

Will a Melanoma Patient Respond to Immunotherapy?
54 Patients
11,862 cells per patient
30 proteins measured in each cell

Manifold Classification: Non-Windowed Scattering
Each cell is a point in R30

Each person is a point cloud of 11,862 points in R30

We assume each person’s points lie upon some d-dimensional
manifold for d < 30.
Scattering achieves 83% accuracy vs 48% from baseline
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Conclusion

The Euclidean scattering transform is a model of CNNs
Highlights the role of group invariance
Provable stability / invariance guarantees

The scattering transform can be extended to graphs,
manifolds, and other measure spaces with similar theoretical
guarantees as the original
The manifold scattering transform can be implemented on
points sampled from unknown manifolds with provable
convergence rate
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